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I. INTRODUCTION

This report was prepared for the Advanced Logistics Research

Division, Bureau of Supplies and Accounts, U. S. Navy, in partial fulfill-

menL of Navy Contract Nonr 2904(00).

A major goal of Lhe Navy is to develop scientific inventory decision

rules chat will reduce supply system costs while maintaining system effective-

ness. As an importanL step in developing these rules, the Navy is devoting

much effort to the construction of mathematical models that describe the cost

and service effects of invenLory policies. The utility of the rules in minimizing

sysLem cost depends upon the ability of the mathematical models to approximate

real-world behavior.

The essential components of a mathematical model of an inventory

system are:_-

1. The direct costs of operaLing the system, e.g.,
holding costs, transporLation cosLs, procurement
order costs.

2. The imputed costs of departing from system
effectiveness criteria, e.g., stockout costs.

3. The administrative costs of managing the
system, e.g., data collection, transmittal
and processing costs.

4. The constraints imposed on the system, e.g.,
warehouse capacities, budget limitations.

5. The demand process that the system must
satisfy, e.g., periodic replenishment,
random failures.

1_/ See for example, Transpor~ation-Inventory Trade-offs. Phase B. Decision
Models for Supply System Operations, prepared for Bureau of Supplies and
Accounis under Navy Contract Nonr 2904(00), by United Research Inc., 1960.
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In this report we are concerned with mathematical characterizations

of only the demand processes. In the majority of supply situations, the

quantity that will be demanded in a given time period is uncertain. Consequently,

the behavior of demand with time must be considered to be a random process,

describable only in terms of probability distributions. Our primary interest is

in the exploration of probability distributions for describing demand that are

useful in constructing inventory models.

Ideally, all Navy Supply System items could be described by a single

distribution having but one parameter, say average demand per time period.

The nature of replacement demand, however, varies widely among items in the

syscem. Some items are consumed in a regular manner that can be predicted

with precision, such as food ihems, and items that are not actually consumed,

buL may be replaced periodically, or arbitrarily, such as submarine batteries

and paint. Other items are consumed in a purely random fashion. This is the

case, for example, with cerLain ship parts, or items that have working lives

much longer than useful lives and need replacement due to "accidental"

failures. Hatch covers, ship's propellers and shafts, and ladders are items

in this category.

It is thus possible Lo distinguish several classes of items that differ

from each other not only in their average demand per time period, but also in

their variability of demand. The most commonly used mathematical model which

assumes that the quantity demanded will always be one unit and that a demand

is as likely in any one short time period as in any other, is not capable of

describing the behavior of all these classes.

Consequently, investigators have sought more general mathematical

models capable of providing a better description of the observed demand
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processes. Two of the models that have frequently been suggested are the

negative binomial and the stuttering Poisson.

To understand why such distributions have been favored over the

infinite number of possible demand models, it is necessary to consider the

factors that must influence the investigator in selecting a distribution. It

is of primary importance to recognize that any probability distribution selected

to describe a demand process will be an approximation. It is an approximation

in the sense that there is no experimental method for determining with absolute

certainty the fact that the model corresponds to reality. Nevertheless, an

approximation is an adequate representation of the process if there is a high

probability that the past history of the demand process could have been

generated by the model. If the past history of demand is an improbable

realization of the process described by the model, then the course of prudence

is to reject the model. On the other hand, there may be many probabilistic

models that could have generated the observed demand with high probability;

in this case, statistical considerations alone cannot serve as a basis for

deciding which of these models is an appropriate representation of the demand

process.

The use of empirical distributions of demand in inventory system

models is seen to be especially unsound in view of the preceding argument.

The past history of demand is but a single realization of the demand process,

and the accumulation of future demand data may show that it was an extremely

improbable realization.

A second important factor in selecting demand distributions is that,

for practical reasons, only those approximating distributions that are relatively

simple in form can be considered to be satisfactory. There are several reasons
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why wi- steek simpliciy, in the sensei ot mathematical tractibiliy arid descrip-

Lion of itemi demand by a limited number of parameters. Mathematically

tractiblc demund distributions are pre, -equ-,sites to the mathematical analysis oi

inventoi y systemns. In fact, only the most elemeuntary properties of an invenf.(;r"

system can 11e determined marb-- rnati call y if the demand distribution of tile

sys~e m cannot be considered to belong to a surwfisingJly small class of wooh lilizy

diSiributions. "urtherniorc , the developmenL of con..rol rules is made almost

.m.possijbly difficultL unless this condition is met.

Limitation of the number of parampters of the distribution is required

because t~~e lirn.tedi amount of data available in most inventory situations is

sufficient Lo yield statistically significant estimates of only a few paramecers.

o the extent that the models contain more parameters than can be estimated

with assurance, the investigator would be better advised to use a simpler

demand model until more informatio)n on tae deniand process is accumulated.

Since in most dlemand situatilons, only thxe moan and variance can be mfeanlig-

fully measured' jr dredICLed, only tnise models whose parameters are de-ter--

minable fiom rLhese quantitites shujuld Ote employed.

Anothut imporant tacior in selecing a demand distribution is

associated with simplicity iuz nut directly related to t. This factor is he

physical interpretablillLy Of the probability distribu.ions used to describe

demand. A majoi distinction bt-tween the statistician or ma~hematiciatt :,nd

the operations analy-. lieS inl Lheir r,-gard for the pi",-sica interpretability

of the results. Thu nldd'.hemaucian is primarily concerneda with the "fit',

of his theore,-cal distrilxition LO the emprical distribu'ion. If Lhe fit 1-3 goad

in a statistical zens( , ten tile tratl-Lmatician can usually decide that ,P

obtained a satisfdctory dcescriptioii of the piocess. The operations analyst,
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on the other hand, requires not only mathematical significance, but also

physical reasonableness of the results. The operations analyst first observes

the physical process of demand and then hypothesizes a microscopic model

of demand. He determines the over-all demand distribution that would be

generated by the microscopic model, and, at this point, establishes the

validity of his characterization of the process by comparing the statistical

properties of his model with those of the real world.

The distinction between the two approaches is not trivial. The

requirement of physical reasonableness helps to assure the operations analyst

that he has not ignored some important physical aspects of the problem in

formulating the mathematical model. Just as one would be wary of driving

over bridges, or of flying in airplanes designed entirely by mathematicians,

so should he be cautious in accepting the results of an inventory model based

on mathematical considerations alone.
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II. SUMMARY

The purpose of this report is to examine the probability distributions

Lhat are pertinent to the description of Navy replacement demand processes.

Demand patterns observed in the Navy Supply System indicate that the actual

demand process is complicated. Simple Poisson models for demand appear to

be useful only in special situations, such as for certain classes of items that

have very low demand rates. The remaining situations indicate that there is

more "clumping" of demand or regularity of time between demands than is

predicted by the Poisson model.

Consequently, various investigators have proposed other models

that allow for a range of variance-to-mean ratios and other statistical param-

eters of demand to capture Lhe basic nature of these more complex patterns. In

particular such disLributions as the negative binomial, stuttering Poisson,

geometric Poisson and the Erlang appear frequently in the literature of logistics

systems, and are discussed in this report. Scrutiny of these models has

revealed that the class of models that has been considered for describing the

demand process is not so large as it might appear because some of the models

are special cases of others. In particular the following properties of commonly

used demand distributions do not seem to be generally appreciated by inventory

systems analysts:

1. The assumption that demand in any time period is
statistically independent of demand in any other

non-overlapping time period implies that the
demand must be described by a member of the class
of distributions known as compound Poisson.i/

l A!hough some investigators use the term compound Poisson to refer to the

sLuttering Poisson distribution, this usage is misleading since many other

distributions are also compound Poisson distributions.
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2. Although the stuttering Poisson and the geometric
Poisson distributions are apparently considered to
be essentially different by many investigators,
there is no difference when the initial conditions
of the demand processes are appropriately selected.

3. The negative binomial distribution, which is
frequently advocated as a demand distribution, is
interpretable as a compound Poisson distribution
in most situations. Furthermore, there are several
microscopic demand models that can lead to over-
all demand distributions of the negative binomial
family. In accordance with the earlier discussion
of physical reasonableness, the appropriateness
of the negative binomial in describing a demand
process can be evaluated by determining whether
one of these microscopic models is a reasonable
source of demand.

In the remainder of this report, a systematic analysis of demand

distributions will be presented. This analysis will establish not only the

results indicated, but will also consider demand distributions from a more

general point of view.
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III. COMPOUND DISTRIBUTIONS

InLroducdon

The largest class of probability distributions useful for the descrip-

tion of demand appears to be the class of compound distributions. These

distributions are capable of describing fairly general demand processes often

without r sacrifice of analytic tractibility. Simplicity in mathematical

analysis is most likely to exist where the demand process is of the generalized

Poisson family that is usually assumed explicitly or implicitly in the literature

of inventory control. This chapter develops the theory of compound distribu-

Lions. In Chapter IV the theory of recurrent events is developed as a foundation

for later chapters. Chapter V presents the theory of compound Poisson processes

as an important family of compound distributions. A second family of distri-

bunions that may be useful in Lhe description of demand, the Erlang process, is

suigj, i n Chaptcr VI.

Dcvi i%,mcnt o the Compound Distribution and ics z-Transform

The process by which compound distributions are generated is

described as follows. Consider two independent random variables n and k

with ;enst% functions f(n) and g(k). The functions f(n) and g(k) will be called

the compounclng; and samplinj distributions respecLively. The function g(k)

can have non--.c.ro values only for non-negative integers, k. The function f(n)

could have as its domain any real number, but we shall restrict its domain to

the inteiers tor our present ciscussion./ In accordance with the integral

domains of the compounding and sampling distributions it is possible for us to

,hink o1 thesc distributions as probability mass functions rather than probability

%' The ttn.ion of the a3iqumont to the case where n can be a continuous
Sriil,'t1, , velop d in ihe appendix to this report.
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.A' Z'- OII , hovt.ver we Siiil .. ' >. WI

01 III o tile sum ot k 'lk'. 1i. S t IOM f(n)

icck is o~ inJom vilra able frr:,iii()*.V . . h(m) ne

un,; \ tnf of rri The 1UfllC. ,(ji) I::. iO>e ~orddit~u J

c~icnwu Li'.' funictions f(n) en. JI (Kj.,('I~) W robability thai

I ' U a.K s rnples from f(n) a3kcs on LilC lvriiuc ir.. Then we may vvric::

11010= g (k) h(MiK) (.

* k it:anc e. ar 1 It s oif (n) -:rie probab)ility h(m I it
~n~a'ono ft)*~oec ~ (in) Th-e quariti.

K* ~ f(k- 1)* (m-j) k=~1,2

I1 fo, trn=0

0 e'lsewi-,wre (3.2)

CCILItio (2 1 may iDC written:

i J atz) nd ru) 1)e the z.-trans--orms of the density functions

~; u t(n) , respcctively, detined by
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00

H(z) -z zmh(m)
m-oo

00

G(z) =L zkg(k) (3.4)

00

F(z) zznf(n)
n=oo

If we multiply both sides of Equation 3.3 by zm and sum over all m, we

obtain

00 cc 0

h(m)zm =7 g(k) z k  (3 . 5)

M-Go0 k=O m=-Go

Using the definitions given in Equations 3.4 and the fact that the z-transform

of the k-fold convolution of a probability distribution is equal to its z-transform

raised to the kth power we may write Equation 3.5 as

00

H(z) =Zg(k) [F(z)]k (3.6)
k0

The definition of G(z) allows us to write Equation 3.6 in the form

H(z) = G [F(z) ] . (3.7)

Equation 3. 7 is our basic result. It shows that the z-transform of

the compound distribution may be obtained by taking the z-transform of the

distribution that determines the number of samples (the sampling distribution)

and replacing every z by the z-transform of the distribution from which the

samples are being taken (the compounding distribution).
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The demand in a given time period is described by the compound

distribution, h(m), defined by Equation 3.3, or equivalently in transform terms

by Equation 3.7, if the number of customers that arrive in a time period, k, is

described by the density function g(k) and the number of units, n, that each

customer demands is independent of k and is governed by the density function

f(n). Although n, the quantity ordered by a customer, will usually be positive,

it can take on negative values if customers are able to return supplies previously

received but not used.

Moments of the Compound Distribution

The moments of the compound distribution may be related to the

moments of the sampling distribution and the moments of the compounding

distribution. To obtain this relation, let us recall that if we have a distribution

f(n) with z-transform F(z), the mean, , second moment, n2 , and variance, 02

of f(n) are related to the derivatives of the z-transform F(z) at the point z-l by

the equations:

- dF(z) = F'(l)
dz z1l

n 2 d2 F (z) + dz 1 - Fu(l)+FU(l) (3.8)dz 2  dzl

and

2 _ n -2 F(1) + F'(l) - [F'(1)] 2

The mean, m, and variance,a2 , of the compound distribution, h(m), may
m

then be obtained as folows:
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H(z) G [F(z)]

HI(z) -GI[F(z)] F'(z)

HI(l) =G'[F(l)] FI(1) .(3.9)

However,

F(l)=l 1 (3. 10)

so that we obtain

H'(l) =G'(1) FI(l)

or

mkn .(3.11)

Equation 3.* 11 shows that the mean of the compound distribution is

equal to the product of the means of the sampling distribution and the compound-

ing distribution.

For the rac, a , we first compute

H" (Z) - (G[F(z)] F(z))

.G"(F(z)] F'(z - F'(z + G'[F(z)] F'(z)

H"(1) =G"(1) LFI(l)] 2 + G(1) F"(1)

-G-l)- 2 + i F-(l) .(3.12)

The variance is given by:
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2 = H"(1) + H'(1) - [H'(1)]2Om

- G"(1)-2 + Fu(1)+ --k2 2

- k + k2] n2 + R 2_ n+ n2] + nj2 -2

n2 2 + R (2 (3.13)

We see from Equation 3. 13 that the variance of the compound distribution is

equal to the variance of the sampling distribution multiplied by the square

of the mean of the compounding distribution plus the variance of the compound-

ing distribution multiplied by the mean of the sampling distribution.
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IV. RECURRENT PROCESSES

Introduction

The previous chapter discussed the theory of compound distributions

because they are important models for the number of purchases in a given time

period. In this chapter we shall investigate, in detail, the time behavior of

demand processes. We are interested in counting the number of events that

ozcur in a given time period when the distribution of times between arrivals does

not vary with the passage of time. The results of the chapter show that the dis-

tribution of the number of events in a given time period depends on the definition

of the time interval over which the events occur. The basic theory underlying

the type of demand model we are discussing is the theory of recurrent events.

If we define the arrival of a customer to be an event, then for station-

ary processes where customer arrival times are independent we can define the

density function of the time between successive events, or the interevent time, T,

by a(T). By repeated sampling of the density function a(T) we can construct a

realization of the customer arrival process. An important statistic of this process

is the number of events in a given time interval. To define this statistic precise-

ly It is necessary to specify how the time interval is placed with respect to the

occurrence of events. One way to define this interval is to say that it begins

immed ately after the occurrence of an event and lasts for a time interval t.

Counting from an Event

Let us define p(n, t) to be the probability of n events in such a time

interval t. The number of events that occur in a time interval t following 3n

event will be n_ 1 if the first event occurs at a time T (T-t) after the beginning

of the interval, and n-i events occur Jn the remaining time period, t-T, which,
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of course, is initiated by an event. Since the occurrence of the first arrival at a

time T represents a mutually exclusive set of events for different values of T<t,

and since the occurrence of the first arrival at time T is independent of the occur-

rence of the remaining arrivals in the interval t-T, we may write

p(n,t) a(T) p(n-1, t-r) dT n>l (4.1)
0

The probability that there will be n events in a time interval t beginning with an

event is thus the convolution of the interevent time density function, a(r), with

p(n-1, t).

Let us denote by P(n, s) and A(s) the Laplace transforms of p(n, t) and

a(r), defined by

in

P(n,s) = \ p(n,t) e - s t dt = L [p(n,t) ,

0

and (4.2)

A(s) =a(T) e-ST dr = L (a(r)]

0

In the transform domain, the convolution of two functions becomes the product of

their transforms, and hence Equation 4. 1 may be written as the difference equation

P(n, s) = A(s) P(n-l, s) , n >1 (4.3)

The solution to this difference equation is

P(n,s) = P(0, s) [A(s)n , n_>1 . (4.4)

It now remains to find P(0, s), the transform of p(0, t). No arrivals will occur in a
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time interval t beginning with an event if the time until the next event 'r is greater

than t. Hence, we may write

00

p(Ot) = a(r) dr

t

t

I- Ya(r) dr . (4.5)

0

Taking the Laplace transform of Equation 4.5 we obtain

p(o, s) _=-I _ A(s) (4.6)
s s

Thus, we can write Equation 4.4 as

P(n, s) -- 1-A(s) [A(s n0 (4.7)

Equation 4.7 yields the Laplace transform of p(n,t) for an arbitrary interevent time

distribution, a(r).

Counting from an Arbitrary Time

Although it is sometimes important to count events in a time period be-

ginning with an event, it is more often the case that we wish to count events begin-

ning with an initial time selected in a more general way. Let us suppose that count-

ing is started at an arbitrary instant such that the time to the next event, '1, has a

density function h(- j). This density function h(T l) is generally different from the

interevent time density function, a(r). Let PA(n,t) be the probability that n events

will occur in a time interval t that begins at such an instant. Then by reasoning

similar to that used in obtaining Equation 4. 1 we obtain

t

PA(n,t) =Sh(,rI) p(n- 1, t-r I) dr 1  , n_1 . (4.8)

0
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Equation 4. 8 shows that the probability of n events in a time interval t starting

at an arbitrary point in time is given by the convolutton of the density function for

the time until the first event, h(Tl), with the probability that n-i events will occur

in a time t starting after an event. We define PA(n, s) and H(s) to be the Laplace

transforms of PA(n,t) and h(T 1 ). Then Equation 4.8 may be written in the transform

domain as

PA(n,s) = H(s) P(n- 1,s) , n_> . (4.9)

If we substitute the result of Equation 4.7 into Equation 4.9 we obtain

PA(n,s) = H(s) [-A(s)] [A(s)]n-  n>l (4.10)
S

Equation 4. 10 gives the transform of the probability pA(n,t) for n? 1. It remains

to find the transform of PA( 0 ,t). By reasoning similar to that used for Equation 4.5

we obtain

t

PA(0,t) = 1- .h(T I ) d71  (4.11)

0

The Laplace transform of Equation 4.11 is

PA(O, s) -! [ 1 - H(s)] (4.12)

If H(s) = A(s) the results of Equations 4.10 and 4.12 agree with Equation 4.7.

Counting from a Time Selected at Random

Perhaps the most important case of counting for recurrent processes

arises when the initial time is selected independently of the event process; a situ-

ation most often called starting "at random" in time. This way of starting the

process will imply a particular form of h(,rl), the density function for the time until

the next arrival, and so is a special case of the arbitrary starting process described

above.

Let us define hR(Tl) to be the density function for the time until the first
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event from a time selected at random, and let HR(s) be its Laplace transform.

Furthermore, let pR(n,t) be the probability of n events in a time t starting at

random, and let PR(n, s) be its Laplace transform. From these definitions and

Equations 4.10 and 4.12

1 Hn-l
) sR(S) [1-A(s)] [A(s)] - 1 n 1PR(n, s) =( .3

[ 1-HR(s)] 
n=O

To find hR(Tl) we first recall that the average time between events, r, is

given by

-- A(s) (4.14)ds Is=O

and therefore that the average event rate, X, is
1 1
)LO-- 1- (4.15)T A'(0)

If the starting point is selected at random, the next event will occur at a time

between rI and rI + dT I if an event occurs in the interval d'r1 and if the time

between this event and the preceding event is greater than - 1 . Since the prob-

ability of an event in any short time interval is )XdT1 , the previous statement in

probability terms is

hR(r 1) dT1 -- Prob interevent time > T 1

- Xd I  a('r) dT

'T

or

hR(T 1) ,, 1-5 alr) d] (4.16)

0
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Equation 4.16 is an explicit expression for hR('Tl) in terms of the interevent time

density function a(r). The Laplace transformation of Equation 4.16 is
x

HR(S) =s r i-A(s)] (4.17)

Finally, substitution of Equation 4.17 into Equation 4.13 yields

! 2 ln-i
X [1-A(s)] [A(s) n n 1

PR(n, s) =' (4.18)
12- s S- X +)-A(s)] n =0

Bivariate Transform

It is often useful to transform with respect to the discrete variable, n,

in our probability expressions as well as vith respect to the continuous variable t,

i.e., it is useful for calculating the moments of the distribution of the number of

events in a time interval t. Let us define the bivariate transform Pb(z, s) of p(n, t) by

00 0o

Pb (ZS)= np(n,t) e- st dt

n=O 0

C0

= zn P(n,s) (4.19)

n=O

For P(n, s) given by Equation 4.7 we have
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00pb Z z n [1-A(s)]I [ A(s)]In

00

n0O

1-A(s) (4.20)
sf 1-zA(s)]

Similarly, we shall define P b(z, s) and R'b(z s) to be the bivariate transforms of

PA (n, t) and p R(nlt). From Equations 4.10 and 4.12 for PAn s) we have
00

n= 1

00

= -Hs + HIs)r 1-A(s)] [ zA(s)]I

1-H(s) +zH( s) r 1-A(s)]L
s s r 1- zA(s)]I

=1-H(s)-zA(s)+zH(s)

s [ 1-zA(s) ] (4.21)

For counti ng from a random time we can substitute Equation 4. 17 for H(s) in

Equation 4.21
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b 1-i[ 1-A(s)] zA(s) + z;{ 1-A(s)]

Rzs s [ -zAs

s-X + XA(s) -zsA(s) + zX - zX.A(s)

s[ 1-zA(s) I

(s- X + z)2 + A(s) C X-zs-zX] (.2
s ri-zA(s) ]

Use of the Bivariate Transform to Calculate Moments

The bivariate transform P b(z, s) is an important quantity because it may

be used to determine all the moments of the distribution of the number of events

in time t. In particular, the Laplace transform of n (t), the expected number of

events in time t, is found by evaluating the derivative of P b(z, s) with respect

to z at the point z=l. This is shown as follows

00 00

b (S) 7 n YSp(n,t)e-stdt

n0O 0

1)0 00

a P Z'S = 7n n-I S(nt)est dt

n-0 0

00 00

zl 0 n=O

QO

0S n-(t) e-st dt

L [ (t) 1(4.23)



For a recurrent event process starting after an event we may calculate

the Laplace transform of the expected number of events from Equation 4.20 as

Sp b(Z ' s) =A(s) [ 1-A(s) ]
8z sj[ 1-zA(s) ]2

L [ n(t)] 8 Pb(Z, s) zA(s) (4.24)8z z=l s[1As

Similarly, for a process starting at an arbitrary time we may use Equation

.21 to obtain the expected number of events in a time t,nA(t), as follows

aPb (Z, s) - H(s) r 1-A(s) I

Pz A s[ -zA(s) ] 2

8 b H(s)
L[n(t) - P (z, s) - (s) (4.25)

LAt) =z A z=l s[1-A(s)]

Finally, to calculate the Laplace transform of the expected number of

,ents in a time t for a process starting at random, n (t), we substitute HR(s) from

E'u,!tion 4.17 into Equation 4.25 to obtain

L[n R (t)I (4.26)

If we take the inverse transform 3f Equation 4.26 we find that

nR(t) = At . (4.27)
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Equation 4.27 is a particularly important result because it shows that the expected

number of events in a time t starting at random is equal to the product of the

average event rate, X, and the time interval t and thus depends only upon the

mean of the interevent time distribution.

This chapter has summarized the theory relevant to the counting of

recurrent events with particular emphasis on the importance of the starting point

'Df the period. This theory will be utilized in discussing the compound dis-

tributions used to describe demand.

4 - 10



V. COMPOUND POISSON

Introduction

The compound Poisson distribution is a family of compound distribu-

tions of special importance in inventory control theory. In this chapter we

shall develop the properties of the compound Poisson family and show how such

commonly used distributions as the stuttering Poisson and negative binomial

may be interpreted as compound Poisson distributions. Finally, the ppint is

made that the assumption of independent demand in independent intervals,

common in inventory analyses, implies a demand distribution of the compound

Poisson type.

The Regular Poisson Process

The Poisson process may be described as a recurrent event process

where the interarrival time distribution, a(T), is exponential in form,

a() Xe- (5.)

The Laplace transform of this distribution is

A(s) = X (5.2)

We are interested in the number of customers that will arrive in a time t.

Chapter IV shows that this probability generally depends on the placement of

the time interval. In particular, Equation 4.7 gives the Laplace transform of

the probability that n customers will arrive in a time t following a customers$

arrival, p(n,t). Since we are dealing with a Poisson process we substitute

Equation 5.2 into Equation 4.7 and write

P (n, s) = s - sAI sA

Xn
= 5(s+A) n+ 1 n>0 (5.3)
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Finally, inverse transformation yields

p (n, t) (Xt) e (5.4)
nI

Equation 5. 4 is an expression for the probability that n customers

arrive in a time t following an arrival of a customer. If counting is begun at

random then Equation 5.2 must be substituted into Equation 4. 18 to yield

PR(n, sl the transform of the probability that n customers will arrive in a time

t followinq a point at random; the result is

PR(n, sX

s 2  S+- X n = 0

or

PR(n, s) n n>O (5.5)
(s+) n+ 1

Note that Equation 5.5 is the same as Equation 5.3 and therefore p(n,t) = pR(n,t),

and we obtain the same probabilistic behavior of the process for both event-

determined starting times and random starting times.

The bivariate transform of p(n,t) = PR(n,t) is given by

= Z'S Pb z,s =) zn
pb~R~ n __1

n-0 (s+A)nl

s+X s+X
n=O

1

1 (5.6)
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Definition of the Compound Poisson Process

The compound Poisson distribution arises in a demand situation

when customers arrive at random according to a Poisson process and then

purchase a number of units, n, governed by a discrete density function, f(n).

The probability that k customers will arrive in a time t if the average customer

arrival rate is X is obtained from Equation 5.4 as

g (k) e ( i (5.7)

The number of purchases, m, that will be made in a time t is then governed by

the compound Poisson density function determined by the Poisson sampling

function, g(k), and the arbitrary compounding distribution, f(n).

According to Equation 3.7 the z-transform of the compound distribu-

tion, H(z), is related to the z-transform of the sampling distribution, G(z),

and the z-transform of the compounding distribution, F(z), by

H(z) = G[F(z)] . (5.8)

The z-transform of the Poisson sampling distribution is obtained using

Equation 5.7 as

G(z) = g(k)z = e ki '- e Xt eXtz

k=O k=O

or

G(z) = e - t( -z) (5.9)

Therefore, for an arbitrary compounding distribution f(n) with z-transform F(z),

the z-transform of the compound Poisson distribution of purchases, H(z,t), is

given by H(zt) - xth-r(z) . (5.10)

5-3



The Regenerative Property of the Compound Poisson

Many interesting properties of the compound Poisson distribution as

a demand model may be derived from Equation 5. 10. Suppose, for example,

that we have one compound Poisson demand process with customer arrival rate X,

and a compounding distribution of individual customer purchases, f 1 (n), whose

z-transform is given by FI(Z). Suppose also that we have a second compound

Poisson demand process with corresponding properties X 2' f2 (n), and F2 (z).

If the processes are independent, then the z-transform of the probability density

function of the total purchases in time t is given by

H(z) = H1 (z) H2 (z) = e-XIt(l-F(z)J e-)X2t(l-F 2 (z)] (5.11)

Let us investigate under what conditions Equation 5. 11 also

represents a member of the compound Poisson family. We may write Equation 5. 11

in the following way

H1(z) =exp -(X1+X )t [- 1  F Z -~ 2 F(Z)] (5.12)1 22 2

or

H(z) = exp 0-(A +X 2)t[ I - F(z) . (5.13)1

We see that Equation 5.13 represents a compound Poisson process with a

customer arrival rate equal to the sum of the rates of the two original processes

and with a compounding distribution whose z-transform, F(z), is the transform

of the sum of the two original compounding distributions, weighted by their

respective arrival rates; that is,

AI  A2
F (z) - (Z) + - F(z) . (5.14)

X1+X2 1 A 22
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Therefore we have shown that the sums of compound Poisson processes are

compound Poisson processes.

A demand model for which the result expressed by Equation 5.13

is relevant is the model for the physical situation where two groups of

customers with different arrival rates and purchasing characteristics purchase

the same item. For example, destroyers and aircraft carriers will have quite

different arrival and purchase characteristics for certain types of vacuum

tubes.

Moments of the Compound Poisson Distribution

The moments of the compound Poisson distribution are easily

obtained from the results of Chapter III. The mean and variance of the number

of customer arrivals in a time t for the Poisson sampling distribution of

Equation 5.7 are

Ok = Xt .(S.1is)

The mean number of purchases in time t, m, is obtained from Equation 3. 11

as

m = ),tn (5. 16)

while the variance is given by Equation 3. 13 as

2 -2 2
Gm n X t+ Xtn

= xt(2+ 2)
n

= Xt n (5.17)
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We thus see that the mean and the variance of the compound Poisson distribu-

tion are proportional to only the first and second moments respectively of the

compounding distributions.

A parameter that is often used to describe demand distributions is the

variance-to-mean ratio, R , defined by
2a m

R G - (5. 18)
m

If we use Equations 5.16 and 5.17 we see that for the compound Poisson

2
R - n-  .(5.19)n

We shall now show that the variance-to-mean ratio for the compound Poisson

must be greater than or equal to one, if n is positive. The first and second

moments of the compounding distribution are defined by

Z nf(n) (5.20)
n=-x

and

n = Z 2 f(n). (5.21)
n=- 'tD

2-Consider the difference n - n . We may write
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00 00

n - n n f(n)- nf(n)
n=-oo n=-00

00

=Z (n2 _ n) f(n)
n-- oo

n=00

c-c

n(n- 1) f(n) (5.22)
nl= -00e

Since the product n(n- 1) is always greater than or equal to zero for any integral

value of n and since f(n) can never be negative it follows that

2n -n>0

2,
n 2 ' n 4

and finally, since n is positive by assumption, we find from Equation 5.19

R>1 . (5.23)

This completes our discussion of the properties of the compound

Poisson distribution. The sections following describe certain special members

of the compound Poisson family that have been suggested for demand models.

The Geometric Poisson and the Stuttering Poisson Distributions

Introduction

Two distributions that are often used for describing demand in

inventory systems are the "stuttering" Poisson and the geometric Poisson

distributions. It is of interest to examine the exact interrelationship between
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these distributions in order to determine how results of analyses based on one

of the distributions may be modified to be applicable to systems analysed using

the other.

The stuttering Poisson distribution refers to an arrival process where

interarrival times are exponentially distributed except that there is a finite

probability of a zero interarrival time represented by an impulse at the origin

of the interarrival time density function. If we consider each arrival as a

single demand on the system, then the impulse in the interarrival density function

will cause a "clumping" of arrivals and hence a clumping of demand that would

not be present if an interarrival time of zero had zero probability. (The simple

Poisson process is this special case of the stuttering Poisson.) As a result the

stuttering Poisson is sometimes a useful model for systems where multiple orders

can occur.

The distribution allows clumping of orders in a conceptually different

way. For this distribution the interarrival time density function is a pure ex-

ponential, but each arrival when it occurs generates a demand by sampling from

a geometric distribution. The question arises as to how the clumping of demand

caused by this distribution differs, if at all, from that caused by the stuttering

Poisson.

Analysis

To examine this question let us examine each distribution in more

detail, beginning with the stuttering Poisson distribution. For the stuttering

Poisson, the interarrival time, T, is zero with probability p and is selected

from a density functione -O T with probability l-p, so that a('r), its density

function, is given by

a(7) = p6 (,r) + (l-p) &eL " , (5.24)
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where 5 (T) represents a unit impulse at r=O. The Laplace transform, A(s),

of this density function is then

A(s) = p + (5.25)

s+L

The mean arrival rate is given by Equation 4. 15 as

1A' (0)

and hence

1-p

The probability that n customers will arrive in a time t beginning

with an arrival has a bivariate transform, P b(z,s), given by Equation 4.20 using

the A(s) from Equation 5.25 above.

Pb(Zs) = l-p (5.26)
s+P - szp - Pz

If p is chosen to be zero then the stuttering Poisson distribution becomes the

regular Poisson distribution with arrival rate A, for which P(z,s) - 1/(s+p-pz),

as indicated by Equation 5.6. Equation 5.26 is thus verified for this particular

case.

The Laplace transform of the expected number of demands in a time t,

n(t), is obtained by using Equation 4.24.

= j.. ) A(s) =_(I-__PL[.-z Pbz's) = s[1-A(s)] 2 s (5.27)

and inverse transformation yields

t A t + p (5 .28)
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The expected number of demands in time t therefore has a component

that increases linearly with time at a rate A/(l-p) which is, as we found earlier,X.

It also has a constant component, p/(l-p), so that the expected number of

purchases in time zero is equal to p/(l-p). This is a disquieting feature of the

stuttering Poisson, but let us proceed to our examination of the geometric Poisson

before considering this fact further. If the geometric Poisson also has a bivariate

transform P(z, s) given by Equation 5.26, then it will be equivalent to the

stuttering Poisson as a demand distribution. If it does not, then we shall have

to understand the difference.

The geometric Poisson distribution is a member of the general compound

Poisson family. The geometric Poisson is a compound Poisson distribution where

the compounding distribution f(n) is given by the geometric distribution

f(n) = (l-p)pn -l n> 1

0 otherwise

Note that each arrival must create at least one demand. The generating function

F(z) is obtained using Equation 3.4 as

f( n ,_Z ()n- 1 zn -p) (5.29)F(z) = fX n z - (-p -pz
n=0 n= 1

If we assume that the Poisson sampling process has the average arrival rate j,

then Equation 5. 10 can be written as

H(z,t) = e-pt[l-F(z)]

and for the compounding distribution of Equation 5.29 we find
- t[l- ( 1- p)z l-z

lt=5-pz e -p, (5.30)
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The bivariate transform P b(z, s) of p(n,t) is given by

P b(z,s) = L[H(z,t)] , (5.31)

and so

Pbzs- 1 l -pz
P ( (Z+ s) -p-z (5.32)

s+;Il-pz

Membership of the geometric Poisson distribution in the compound Poisson

family makes it unnecessary to specify whether the time interval during which

arrivals are counted is begun after an arrival or at random, in accordance with

the following reasoning. Because the sampling distribution for a compound

Poisson process is the simple Poisson process, it is invariant to counting

beginning at random or after an event, as shown earlier. Since the probability

of n demands in time t depends only on the sampling distribution and the time

invariant compounding distribution, the counting interval for compound Poisson

process may be begun after an event or at random with the same result.

The quantity P b(z,s) as given by Equation 5.32 again reduces to the

bivariate transform for the simple Poisson distribution when p=O. Notice that

the denominator of this expression is the same as that of Equation 5.26;

however, [he numerator is different. Let us compute the expected number of

demands in time t for the geometric-Poisson using Equation 4.23 and Pb(zs)

as given by Equation 5.32. Thus,

LVn(t)] P ( ) = ,(5.33)
&Z z= Is+p- s zp-p z  Zl s2

and
n(t = - - t (5.34)

l-p

The expected number of arrivals in time t for the

distribution has the same linear growth term sA/(I-p) = A, as that for the
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stuttering Poisson given by Equation 5.28; however, it does not have the

constant term p/(l-p). Since we would not expect this constant to appear on

physical grounds, we may ask if we can modify the stuttering Poisson to

eliminate this term. Perhaps when this is done Pb(zs) and hence p(n,t) will

be the same for both distributions.

The difference between the distributions is apparently caused by

the finite probability of purchase for the stuttering Poisson at t--0. If this

were eliminated by requiring that the first arrival not be instantaneous, then

it is possible that the two distributions would agree. The finite probability of

arrivals in an interval of zero length is in fact caused by beginning the

counting process after an arrival occurs. One way to eliminate this difficulty

is to begin the process at a random time. If this is done then PR(n,t), the

probability of n arrivals in a time t beginning at random, has a bivariate

transform given by Equation 4.22 rather than by Equation 4.20. If we use

A(s) as defined by Equation 5.25. then

b l-pz
P (z ' s) = s -pz (5.35)R 5+I.-5Zp -Z W s.5

in complete agreement with Pb(z, s) for the geometric Poisson as given by

Equation 5.32.

Thus we have shown that if we are interested in demand generated

during a time period beginning aL random, the stuttering Poisson and the

geometric Poisson are identical.

The Negative Binomial Distribution

Introduction

The negative binomial distribution has often been suggested as a

model for demand processes. This section will show how several different
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probabilistic models will lead to a stochastic process governed by the negative

binomial distribution.

Distribution of First Success in a Sequence of Bernoulli Trials

The first model we shall discuss is based upon a sequence of

Bernoulli trials. Suppose that we have such a sequence with probability of

success, p, and probability of failure, q=l-p. Let f(k;r,p) be the probability

thaL the rth success will occur on trial r+k. Then f(k;r,p) is also equal to

the probability that k failures will take place in r+k-i trials and a success will

take place on the (r+k)th trial. It follows then that f(k;r,p) is given by

f(k;r,p) = r+k-l P r-lq p  k >0 , (5.36)

or
r+k-l1',rk

f(k;r,p) = k -p q k k10 . (5.37)

With some manipulation, Equation 5.37 can be placed in the form often seen

for the negative binomial distribution. To see this let us investigate the

combination of a objects taken b at a time. By definition, we have

a at a(a-l).. .(a-b+l) a.>b

b b I (a-b) I b 1 (5.38)

0 a, b orb'O.

We may replace a by -a and extend the definition to obtain

- -a(-a-1)...(-a-b+l)
b, bb

b a(a+l)...(a+b-l)
b I

= (-)b a+b- 1 (5.39)
b
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or

a+b- 1 b b -a (5.40)
b (- l) b

Using Equation 5.40 we may rewrite Equation 5.37 as

f(k;r, p) 1 )k -r p r qk (5.41)

Finally, we obtain

f r k
f(k;r,p) = ;ki p  (-q) • (5.42)

Equation 5.42 represents a commonly used form of the negative binomial

distribution; it is the form responsible for the name of the distribution. We

have seen that f(k;r,p) may be interpreted as the probability that in a sequence

of Bernoulli trials with probability of success, p, the rth success will occur

on the (r+k)th trial. An interesting special case is the one where r is set

equal to 1; then, f(k; l,p) is the probability that the first success will occur

on trial k+ 1. This quantity is given by

f(k;1, p) = p qk , k O . (5.43)

We recognize Equation 5.43 as the expression for the probability density

function of a geometric distribution. Note that this geometric distribution has

a non-zero probability for the value k-0, unlike the geometric distribution

discussed above. Let us define F(z;r,p) , the z-transform of the negative

binomial distribution, by

F(z;r,p) z Z k f (k; r, p) .(5.44)

k=O
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Then for rl the z-transform is given by

k0
F (z;1, P) =kX z kpq k- p (5.45)

Now that we have the z-transform of the geometric dstribution, we can find its

mean and variance. Its mean is given by the derivative of its z-transform at

the point z=l. Let us denote the mean of the negative binomial by k(r, p), itsk 2 2
second moment by k2 (r, p) and its variance by ajk(r, p). Then using Equation

5.45, we have

=d) F(z;1, p) - q/p , (5.46)

z=1

2
2 2 (5.47)

dz z=l P

and

j(1, p) = k2 p2 (5.48)

as the basic moments of the geometric distribution.

Let us now find the z-transform of the general negative binomial.

Combining Equations 5.37 arni 5.44, we obtain

F(z;r, p) x z k +k- pr qk (5.49)
k-O k )

or

F(z~r p)=p +k-1 (qz ) k  (5.50)

k=0

To obtain F(z;r, p) let us examine the following relations. From the binomidl

theorem we have

(a + b)n = b (5.51)

Recall that n'as defined by Equation 5.38 is zeio for tTn and je-0. If n is replacd

by -n the binomial theorem is defined by

(a+b)n ( -n- b-

5--I1



Equation 5.39 allows us to write Equation 5.52 in the form

(ab-n 7 n+J- 1 -n-J(a= , a (-_b) j  (5.53)

If in Equation 5.53, we take a=l, b=-qz, n-r, and J=k, then the result is

079 r+k-l r(54
L k (qz)k = (l-qz)-r (5.54)

k=O

and thus F(z; r,p) may be expressed in closed form by
F (z)r, p) ___ pr (5.55)

(lqz)r

We have obtained in closed form the z-transform of the general negative

binomial distribution.

Distribution of the Sum of Samples from a Geometric Distribution

It is informative to write Equation 5.55 in the form

F(z;r,p) = [F(z; 1,p)] r (5.56)

by using Equation 5.45. We see that the z-transform of the negative bonomial

distribution can be expressed as the rth power of Lhe z-transform of the

geometric distribution. It follows that the negative binomial distribution with

parameter r may be interpreted as the distribution of the sum of r independent

samples from the geometric distribution expressed by Equation 5.43.
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The moments of the negative binomial distribution are calculated

from its z-transform as follows:

i (r,p) = - F(z;rp) r(q/p) , (5.57)
z= 1

k (r,p) -d F(z;r,p) + k rp) r2 --rq2+rpq (
dz 2 p 2

z= 1

and

k (r,p) k 2 (r , p ) - [k(r,p)] 2 = r(q/p 2) (5.59)

We see that these results not only agree with those of Equations 5.46,

5.47, and 5.48 when r-1l, but also that they support our contention that the

negative binomial distribution may be interpreted as the sum of independent

samples from the same geome:ric distribution. Thus, the mean of the negative

binomial is r times the mean of the underlying geometric distribution, while

tne variance of the negative binomial is r times the variance of the geometric.

We have now obtained two completely equivalent expressions for

the negative binomial distribution given by f(k;r,p). First, it represents the

probability that in a sequence of Bernoulli trials with probability of success p,

the rt h success will occur on the (r+k)th trial. Second, it represents the

probability that the sum of r independent samples from a geometric distribution

wi.h parameter p will take on the value k. Let us now proceed to another

process that gives rise to a negaLive binomial distribution.

Poisson Demands wiLh Erlang Arrival Rates

Suppose that the demand for a producL in a given time interval of

length t is Poisson- distributed with mean raLe A. Then the probability of i

demands in the period, d(ntAt), is given by
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n -At
d(n xtO _(At)L e = n ! ' (5 " ' ')

Suppose iurther that the demand rate, X , in successive p,.rmods of le-.!th t

is determined by independent samples from the density function g(A) defined

k k

(k- 1) 1 1

That is, the dernano rtoes tiom ,eriod .o ;eri(,. .e chosen ,'roin a k -chase

Erlant discr'buiion wito mean - Of cuur e. 6F k becomes infirate q(4

tends to a unit impuls: a-, and =he demand po(-;ess will be a s'-mip, :
Poisson wir, mean rave X in each period. Let. d(n,,c) be the -)roL, biliiy

thaL n units are demanded in a given period of iengtn c. Then d(n,t) is given

UV

("f-,XL ek k-I -kp
d(n,.) = y(iA) dA 1)1 A, (5. 6 2)

n (k- 1)

or
n7i- ( 3  ~ I  (;k-1' -1*t k '

d!n, ) (t) e T t d(A) (S.C.3)

Using tne gamma function integral expressed by

m e x = M+ .- rI~ = L(S. L4)
a I ko

we orta

n k,, k- I t ka k.'.

t+4A ,t+kF

t -,



Comparison of Equation 5.65 with Equation 5.37 shows that the number of

demands in a time interval of length t is given by a negative binomial

distribution. The parameter r of the negative binomial is the number of

phases, k, in the Erlang distribution; the probability of success, p, for the

negative binomial is given by h Thus we have
t+kp

d(n,t) = f(n;k, L) (5.66)
t+kp

We have thus shown that if demand in successive time intervals is

Poisson with mean rates selected as independent samples from the Erlang

distribution, then the number of demands in a particular interval will be

distributed according to the negative binomial distribution. Such a distribution

could arise in the Navy Supply System, for example, if the number of ships

in port at any particular time followed the Erlang distribution, and each ship

generated demands according to the same Poisson distribution. The total

quantity demanded of the Navy Suppiy System would then be distributed according

to the neaative binomial distribution.

The Negative Binomial as a Compound Poisson

Still another model of the negative binomial is based on the compound

Poisson distribution. Suppose that arrivals are governed by a Poisson process

with mean rate X and that when each arrival occurs demand is generated as a

sample from a discrete distribution f(n) with z-transform F(z). From the theory

of the compound Poisson distribution developed above, we have from Equation 5.10

that the z-transform of the number of demands in time t is

H(z,t) - e-At[1-F(z)] (5.67)
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I tie! compound Poisson demand is to be governed by a negative binomial

ditntr.bution with parameters r and p, then its z-transform must also be given

oy Equ--ation 5.55. Hence, if we set Equation 5.55 equal to Equation 5.67 we

:he', soLve for F(z) , the z-transform of the required compounding distribution.

Ihu , we write,

,A" l-r'(z) _ (5.68)
' - l - q z

and solve for F(z). Invwrsion of the z-transiU-,m '(z) will then yield the analytuc

e--pression lor the compoundingc distribution inquired in the compound Poisson

so that total demand will e given by Lhe negaTive binomidl ais-.r.bution.

Proc:eeding algebraically, we obtain

-).tj 1-F(z)] Orn p- rln(l-qz)

l-F(z) M p , +_In (l-qz)Xt Xt

F(z) - 1+ inp- -L In (I-qz) . (5.69)At At

Using the loqarlthmic expans-on

-(n0--: ./. ,)
n 1

we may rp'writc Lquazon 5.1.9 ds

vI n

As At L
n= -

S. -.-0



The z-transform of the compounding distribution is in a particularly convenient

form as it is given by Equation 5.71. Since F(z) is related to the compounding

distribution f(n) by
0o

F(z) =X z n f(n) , (5.72)
n=0

identification of the terms of Equations 5.71 and 5.72 allows to write an explicit

form for the compounding distribution as follows:

f (0) = I + r- in p

Ln
f (n) = rt n ' n> 1. (5.73)

Thus, a compound Poisson distribution will produce a demand governed

by the negative binomial distribution if the compounding distribution is of the

so-called "logarithmic" form. We see from Equations 5.73 that there is a finite

probability, 1 + -L- In p, that no demands will be made when an arrival occurs.

If we would like to require at least one demand from each arrival, then f(O) must

be made equal to 0. This can be accomplished by setting

p = e - Lt/ r . (5.74)

Of course, it is required that f(O) never be less than 0 or greater than 1.

Thus, we may write
r

0< 1 + L- in p< 1 , (5.75)

which may be written as

e <p < 1 . (5.76)
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Suppose now that one wished to represent a negauve bitlorntl&

process with parameters r and p by means of a compound Poisson uucess

with Poisson rate X . Equations 5.73 show how the compounding distrhu tloz.

should be chosen as a function of the observation interval, t , and the ,iiver:

parameters. However, it will not always be possible to find an
distribution for arbitrary r, p, A, and t ve :ause if',) may be negati\_.. Tr;

insure that this is not the case, r, p, A, anu t must meet the cequ.ir>

imposed by Equation 5.76. Since tor given r, p, &ad X, Equation 5. lban

always be satisfied by taking t sufficiently large, we can say that an

arbitrary negative binomial distribution can be represented by a .umnzounLc'

Poisson distribution with an arbitrary Poisson raze.

Let us find the moments of the compounding ds:ribution give i,.

Equations 5.73. Its z-transform may be written from Equation 5.69 d.

r/Xt
F(z) - + In P (5.7;,1 -qz

If we refer to the mean, second moment, and va, Lance of the co nuo,j.li.,

distribution by n, n2 , and ,.2 , we obtain

- dF(z) r r /dz

z I

2 n d 2z L- _r. 2 l :'
'n .dz At--q/

-z 222

The mean, m, and vaiance, i.' of the compound Poisson i ,

determined by the momen.s of the compoundinq distribution .s nown .r.
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Equations 5.16 and 5.17. We find

m = Xt n = Xt Xp = rq/p , (5.79)X.tp

and

2 =_ 2 rq. (5.80)
2 2 =t Xt 2 2°m p

Comparison of Equations 5.57 and 5.59 with Equations 5.79 and 5.80 show that

the compound Poisson distribution constructed according to Equation 5.73 has

the same mean and variance as the original negative binomial distribution.

Indeed, the two distributions will be identical in every respect.

Summar'

We have now shown four possible ways in which the negative

binomial distribution could be generated.

1. As the probability of obtaining the rth success on the
(r+k)th Bernoulli trial.

2. As the probability distribution of the sum of r
independent samples from the geometric distribution.

3. As the distribution of total demand where demand
in a particular time interval is Poisson but where
the Poisson demand rate is chosen from interval
according to an Erlang distribution.

4. As a compound Poisson distribution where the
compounding distribution is logarithmic in form.

Other models are no doubt possible; however, it would be worthwhile

in any inventory situation in which a negative binomial demand is experienced

to see if one of these four models can explain the underlying phenomenon.

This chapter has described the general compound Poisson distribution

and important members of the family of such distributions. We have seen two
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examples in which different mathematical models have led to the same observed

demand process. The compound Poisson family is particularly important because

it is the only family of discrete distributions that satisfies the assumption of

independent demands in arbitrary independent time periods. That is, it is the

only discrete distribution that satisfies

p(n,t) = m p(m,-1 ) p(n-m, t-T) , 0 <r<t .- (5.81)
m=0

This assumption is frequently made in inventory theory, often without the

realization that it implies the compound Poisson demand process.

I_/ See Feller, W. , An Introduction to Probability Theory and Its Applications
Volume I, Second Edition, Wiley 1958, pp. 270 - 272.
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VI. THE ERLANG DISTRIBUTION

Introduction

An important recurrent process is that in which the density function

for the time between events, a(T), is the Erlang distribution defined by

Equation 6.1,

r=k XT)k-i e-kXT

a(Tr) = k T(k-1) e

The Erlang density function has two parameters k and X. The quantity k may

be integral or non-integral; when it is non-integral the factorial in Equation 6. 1

must be replaced by the corresponding gamma function. Without loss of

generality we shall consider k to be integral in which case the Erlang distri-

bution can be considered to be the density function of the sum of k independent

samples from an exponential distribution with mean -- . It then follows
k 1

that the mean of the Erlang distribution must be given by , and its variance

by 1-- . If we compare Equation 6. 1 with the Poisson density function,

Equation 5.4, and the Laplace transform of the Poisson density function,Equation

5.3, the Laplace transform of the Erlang distribution can be written by inspection

as

r k
A(s) = (6.2)

If we substitute Equation 6.2 into Equation 4.7 we obtain the Laplace transform

of the probability that n events will occur in a time interval t after an event as

P(n,s) = [ - I I kX 1 n>O . (6.3)
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We must now invert this transform to obtain an explicit expression for p(n,t) .

To perform this inversion, let us consider the truncated exponential

function, En(x), defined by

E (x) = e- x  ×x n>0 (6.4)n
J=o J !

This function is discussed and tabulated by MorseI/. We shall now find the

Laplace transform of E (x) . We first write
n
eXE (x .. * n>O o (6.5)

n -0 jI

and then

L[ eE nCJ)] ~LL[j -s 1=

s 1- i/s

-1 [1 n+7 1 n>o 0 (6.6)

However,

L[En(X)] = L [eXEn(X)]l s = s+l (6.7)

.j/ P.M. Morse, Queues, Inventories and Maintenance, Wiley, New York, 1958.
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and so

L[E Wx)] [1 - 1 +11 (6.8)
n s (s+l)nI n>O

We have thus obtained the Laplace transform of the truncated exponential

function defined by Equation 6,4. If the truncated exponential function should

be written in the form

En (ax) _e - ax  (ax  (6.9)J=O

where a is a constant, then we can find the corresponding transform by

making use of the Laplace transform property

LE (ax)] -1 L[E( 1 1  . (6.10)Ln~a) a n s" s/a

By using the results of Equations 6.8 and 6. 10 we can finally write

L[E (ax)] - 1 1 , n>O (6.11)
n s I _sa +

We can now proceed to the inversion of the transform expression in

Equation 6.3. From Equation 6.3 with n-0 we obtain the transform of p(O,t),

the probability that no events will occur in time t, as

P(Os)= f . (6.12)

Comparison of Equations 6.11 and 6.12 then shows that p(O,t) must be given by

p(Ot) = E (kLt) = e-k't (6.13)
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When n is larger than ,, w 'te Equation 6.3 in the form

P(n, s) s kk k

kX __nk (n+1) k

+s _k_ ls+kA

kA + I)(n )k -I - k-- i (6.14)
s s+kX s s+kX,

If we use Equation C. 11 we can write p(n,t) the inverse transform of P(n,s) as

p(n,t) = :(n+E)k - I (kXt) -E nkl (kkt) , n > . (6.15)

Equation 6. 15 may be written in the form

[(n+J)k- i] nk-1

p(n,t) = e kXt (kxtY ,' (6.16)I j! - (kxt)'
L J=O J=O

and finally, in the form

[(n+I)k-i]
-kxt n 0 (6 17

p(n,t) = e n>O . (6.17)
J=nk

The expression for p(n,t) given by Equation 6.17 is valid for all n greater

than or equal to 0.

We have thus obtained an explicit expression for the probability

that n events will occur in a time interval t following a given event for a

recurrent event process with an Erlang interevent time density function. We

may provide an important interpretation fo this expression when we note that

the truncated exponential function defined by Equation 6.4 is equal to the



probability that a sample from a Poisson distribution of mean x will be less

than or equal to n. To use this fact, we shall build the following model of

the process under consideration. Let us imagine a sequence of recurrent

events which we shall call blips. The interbllp time density function is

E-:4)u hle i Wi L.h mean -; consequently, blips are generated by a Poisson

pruccsJ if raL,, kA. if we say that an "event" occurs at every kth blip then

the events will he a recurrent process with the Erlang interevent time density

function Ot Eq IuIiAin b. 1. The probability that no event will occur in a time

interval Lfuh>winq an event is the probability that the number of blips in the

time int,-v~i will be less than or equal to k-i. Since the mean number of

blips in tir-e t is k Xt, Equation 6.13 is verified immediately.

The probability that there will be exactly n> 1 events in a time

interval t, following a given event, is the probability that the number of blips

in this time interval will be greater than or equal to nk, but less than or equal

tc (n+l) k-i. It is thus equal to the probability that there will be (n+l)k-l or

fewer blips less the probability that there will be nk-l or fewer blips. This

relation is expressed exactly by Equation 6.15.

Now that we have verified our results, let us obtain some other

properties of the Erlang process. Let P(r,t) be the probability that r or fewer

events will occui in the time interval t. Thus P(r,t) is defined by

P(r,t) = . p(n,t) (6.18)
n=O
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Equation 6.17 allows us to write

P(r, t) e - k ) t [ n -1(kit) J

n=O J=nk Jl

[(n+l)k- 1]-k)Lt
e zJl

n0 J=nk

[(r+l)k-1]
e - kXt (kxt)

J=0

E(r+l)k-l1(0t) , r>0 . (6.19)

The cumulative probability of events is thus also given by a truncated exponential

function. Once more, the physical interpretation is clear. The probability that

there will be r or fewer events in time t is Just the probability that there will

be (r+l)k-1 or fewer blips in time t.

An expression for the expected number of events in time t,n(t), is also

easily obtained. This quantity is defined by

go

n(t) =z np(n,t) (6.20)
n-1

Equation 6.20 can be written in the form

go 
x p n,

nlt) W p(n,t) 1= jp(n, (6.21)
n-1 m=l n=l m1l
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By reversing the order of summation we obtain

0 go 0 l

n~t) -z zp(n,t) 1 jp(n,t)
m=l n=m m=l n=O

J. [I-P(m-lt)]
m-1

[ k- 1_Z(k X) ](6.22)
m71

Thus, an expression for the expected number of events in time t is obtained

not in closed form but as an infinite summation of terms that are tabulated as

the probability that a sample from the Poisson distribution will exceed a

specified value. Recall that if sampling were begun at random, the expected

number of events in time t would be simply Xt, as expressed in Equation 4.27.

The second moment of the number of events in time t after an event,

n 2 (t) is calculated in a similar fashion. The defining relation is
00

n2 (t) =! n2 p(n,t) (6.23)

Proceeding as before, we write

n2(t) Z p(nt) (2m-l) Z k(2m-l) p(n,t) (6.24)
n-I MM1 n-l m-l
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The same change in order of summation yields,

00 00

m7-1 n=m

(2m- 1) p(n,t)
m,=i n-rn

= I (2m-l) [1 - P(m-l,t)]

M=1

00

- (2m-1) [ 1 - E mk IkX]t (6.25)
mn1

The expression for the second moment of the number of events in time t after

an event involves summation over the same tabulated terms required for the

calculation for the first moment; however, these terms are now weighted by an

additional factor.

An interesting compound process results when the sampling process

is the recurrent Erlang that we have been discussing. In the compound process

at each event time some number of hyperevents determined by a compounding

distribution also occurs. For an arbitrary compounding distribution it is quite

difficult to determine the probability that a given number of hyperevents will

occur in a time interval t. However, the mean and variance of the number that
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will occur can be calculated by knowing the first and second moments of the

compounding distribution and the first and second moments of the sampling

distribution. These latter quantities are given for the compound Erlang

distribution by Equations 6.21 and 6.25 respectively. Consequently, with

some numerical effort the important moments of a compound Erlang distribution

can be obtained.

6-9



APPENDIX

DEVELOPMENT OF THE COMPOUND DISTRIBUTION FOR A COMPOUNDING

DISTRIBUTION HAVING FOR ITS DOMAIN ANY REAL NUMBER

This appendix will develop the theory of the compound distribution

for a continuous compounding distribution f(n). As in Chapter III, let m be

the sum of k samples from the density function f(n). We wish to find the

compound distribution h(m) generated by the functions g(k), the sampling

distribution, and f(n). From Equation 3. 1 we have

00
h(m) -X0g0k) h(m~k) (A. 1)

k-0

Since m is the sum of k independent samples of f(n), the probability density

h(m1k) is given by the k-fold convolution of f(rW, denoted, as before, by
fk*(m). We define

Go

fk* f(4) f(k- 1)* (m-x) dx k> 1

and formO

0 otherwise (A. 2)

We can now write Equation A. 1 as

00

h( E g(k) (A*(m) .(. 3)
k-0
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Let H(Jw) and F (jw) (J=QFM) be the Fourier transforms of the density functions

h(m) and f(n), defined by

00
H(Jo) = S h(m) e-jwmdm

-00

and

F (J) = f(n) e-jwn dn (A. 4)

Also, let us define the z-transform of the sampling distribution, G(z) as

00
G (z) g g(k) zk  (A. 5)

k=O

If we multiply both sides of Equation A. 3 by e- Jwm and integrate over all m,

we obtain
Go 00 00

S h (m ) e -Jwm dm -- Zg(k) S fk*(m) e-Jwmdm (A.6)

-0 kO -00

Since the Fourier transform of the k-fold convolution of f(r is the Fourier

transform of f(n) raised to the kth power, then using the definitions of Equation

A.4, we may write Equation A.6 as

c0

How) g(k) [F(Jw)]k (A.7)
k-O

The definition of G(z) in Equation A.5 allows us to write

H ) -- G [F(w)] .(A.8)
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This shows that the Fourier transform of the compound distribution, h(rn),

is the z-transform of the sampling distribution, taking z to be the Fourier

transform of the compounding distribution.

Let us find the moments of the compound distribution in terms of

the moments of the sampling and compounding distributions. The rth moment

of a distribution is given in terms of its Fourier transform, BOw), as

xt= jr "r B(jwu) ( 9)

Then, using Equation A. 9, we find

n = j L F(JW) =0 
=  JF (0) (A. 10)

2 -2 (t) =2 j 2 F (0) (A. 11)
n" 2 O 0 w

and

2 = 2 F, (0) - [JF' (0)12  (A. 12)On Wo W

2
The mean, m, and variance , m of the compound distribution, h(m),

may be obtained as follows:

H Ow) = G [FO,)] (A. 13)

JH' G) = G' [F )] JF' OW) (A. 14)

M L) (JLJ) = G- [F(01 JF(O) (A. 15)
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However,

00

F (0) y f(n) dn - 1 (A. 16)
-00

Therefore,

rnG'(1) n

=kn . (A. 17)

This result agrees with Equation 3. 11 for the case of discrete compounding

distributions.

For the variance we compute

am m - [JH 00 ( 1

First, let us evaluate

12 H Ow) -G- [FOw)J[JFI Ow))2+ G' [F(Ow)] j2F: Ow) , (A. 19)

or

a G ( +G'[ F(O)j n2 - (A. 20)

But

G C(1)=2 _ + 2 (A. 2(1)

k
Therefore,

a [a 2 - k. + j21 ;2 + j .2 -_2;2
m k
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2-2 +--2 -2-2 K 2 -R2-;2
a k n nki+ ki-

22 - 2-
a k + (in-k 2

-2 2 j 2 (.
=nak + n (.22

*Again, this result agrees exactly with Equation 13.13 for the corresponding discrete

case.
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